—— e I — —— = =
P ——

AD-A040 553 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAR F/6 9/2
A GENERAL-PURPOSE CROSS-ASSEMBLER FOR PRODUCING ABSOLUTE BINARY==ETC(U)
APR 77 P R KRETZ F19628=76=-C~ onoz
UNCLASSIFIED TN=-1977-20 ESD-TR=77-72

e }i

d ."
END
-:'-:\.rlrl
Fem¥7

|" |0 =02 2

el oo
A

”40

|2

llie
ll e

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

£S5 070V E

o

5 : e e - A S b P R Wr STTT ge mmrgme m
T oI *

¥
B
4
t

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

A GENERAL-PURPOSE CROSS-ASSEMBLER
FOR PRODUCING ABSOLUTE BINARY OBJECT CODE

P. R. KRETZ
Group 46

G
TECHNICAL NOTE 1977-20 5 0/ =t
D B\

()?-‘j o A

6 APRIL 1977 e R \
Yo' -
Approved for public release; distribution unlimited.
LEXINGTON MASSACHUSETTS

T ——

e ————

ABSTRACT

A general-purpose cross—assembler is described. The cross-assembler,
} written in PL/I, has been implemented on an IBM 370/168 using the time-
b sharing Conversational Monitor System (CMS). Absolute binary object code
will be produced. Although the cross-assembler has been desigﬁed with the
intention of assembling code for various microprogrammable machines, even
code for conventional minicomputers has been assembled.

Use of the cross—assembler is discussed assuming a CMS environment.

Included are the disk-resident files to facilitate an assembly. Various

-

pseudo-ops, or assembler control statements, are used to describe the
machine for which an assembly is done. An example of using the cross-
§ assembler for a parallel microprogrammable digital signal processor (PMP-I)

is discussed.

._.;L / LS ——— e ’.".-.‘, ==

PRECEDING PAGK BLANK-NOT FILMED
SN ST "

—~

e

Table of Contents

o Fane
‘! ABSTRACT : v
f INTRODUCTION 1
/3 I. Characteristics of the General Cross-Assembler 3
3 A. Assembler Input Language Specifications 4
: X B. Using the General Cross-Assembler 7
1 J 1. Creating an EXEC File 7
i L 2. Generating an Instruction Table 10
; & 3. Defining and Creating the Architecture File 11l
s 4. Assembling a Program 14
C. Pseudo-op Definitions i3
!,! 1. .DARCH 15 i 4
! 2. .DCLASS 16 i
\ 3. .DOP 19
‘ 4. .DEFLTI 21
r]
5. .CREATI 21 :
6. .DEFIL 21 %
‘ 7 .DTRANS 23 ;
g | 8. .DITAB 23 :
Y .DEXCLC 24 é
10. .DEFIC 24 |1
11. .DIBASE 25 ’
12. .DOBASE 26 §
- ¢

|
g
Table of Contents (Continued)
Page
13. .LOC 26
; 14. .DEFC 26
é ; 15. User-defined Pseudo-op Class 15 27
1
F % 16. User-defined Pseudo-op Class 16 27
‘ é D. Outputs from the General Cross-Assembler ' 28
! II. Example of Creating a Tailored Version of the Cross—-Assembler 30
j for PMP-L
f ! A. Setting Up the EXEC for PMP-1 34
; ! B. Generating an Instruction Table for PMP-I 34
‘ € Creating an Architecture File for PMP-I 37
D. Assembling a User Source Program 39
i References 40
Appendices
A. Definition of Terms and Concepts 41
B. Canonic Classes for PMP-I u-Instructions 44
E 4 C. IC Classes and Translation Tables for PMP-I 47
E D. PMP-1 Program Memory Bit Assignments 48
E. PMP-I Exclusivity Sets 52
F. EXEC File for a PMP-1I Cross-Assembler (PMPASM EXEC) 53
R G. Architecture Definitions for PMP-1 (PMP ARCH) 54
‘ H. Instruction Table File for PMP-I (PMPINST FORTRAN) I3
3 B Sample Program Assembly 58 :
fy 8 Error Messages Produced at Assembly Time 62
K. ALU Function Select Table for PMP-I 67
7 PMP-1 Processor Element (PE) Architecture 68

vi

i

INTRODUCTION

A general-purpose absolute cross-assembler has been written in PL/I to
run on an IBM 370/168, accept metalanguage commands to define a machine, and
then cross-assemble code for that user-defined machine. The cross-assembler
has been used under IBM's time-sharing Conversational Monitor Svstem (CMS),
and this report will discuss the cross-assembler in that environment.

To begin, let us examine the evolutional history of this cross-assembler.
Early in 1975, work was begun at M.I.T. Lincoln Laboratory on a Parallel

. i
Microprogrammable Processor (known as the PMP or more specifically, PMP-1).
This machine was designed to be a high-speed, programmable, signal processor.
In parallel with the construction of the hardware, a set of microinstructions

2 : .
for the PMP was developed. This led to the generation of a cross-assembler
written in PL/I to run on the IBM 370/168 to assemble mnemonics and produce
; 354
object for the PMP .

As time progressed, a new version of this processor, namely PMP-11, was
proposed. This coupled with the increasing use of programmable microproces-—
sors in other applications lead to the creation of a general-purpose cross-
assembler which accepts as input metalanguage commands which contain such
information as word length, memory size, bit meanings, etc. This, then is
the version of the cross-assembler to be discussed.

The remainder of this memo is divided essentially into two major
sections. The first of these sections attempts to look at the cross-assembler

in the general sense, and attempts to explain the metalanguage commands

necessary to assemble code for a particular machine. It begins bv

E:
{
33

E

explaining the input language rules anticipated by the cross-assembler. This
section may seem unuéual to those familiar only with minicomputer code, since
the cross-assembler allows several microinstructions to be coded on the same
line and assembles these into the same program memory word.

This is followed by a discussion of thq files which should be created to
cross-assemble code for a machine. These files typically contain all the
necessary metalanguage statements, thus the programmer is not required to re-
peat these at the beginning of all programs. The available pseudo-ops are
then discussed in depth, explaining when, where, and why they should appear.
Section I is completed with a discussion of the format of the object binary
file output by the cross-assembler. This section should be extremely helpful
for the user who must create a program to convert cross-assembler output to
some medium which is acceptable input to the machine for which cross-assembly
occurred.

The second section of this report is dedicated to an example of the
cross—-assembler in action. Naturally, due to the parentage of the cross-
assembler (and familiarities of the author) the sample machine chosen for
this example was PMP-I. It is hoped that this discussion, along with the
control files for PMP-I appearing as appendices, will give the user enough
information to extend the cross-assembler for the particular machine desired.
This section should also serve as a user's guide for the PMP-I programmer.

At this point it should be stressed that this cross-assembler has been
designed to produce absolute binary output. This implies that for a machine
which does program counter relative addressing the burden of coding program

counter relative constants is left to the user. One must subtract the value

of the current program counter in order to obtain a program counter relative

constant (e.g., if LABEL is to be expressed relative to the program counter one
would need to code LABEL-*).

Although it was the intent of this cross-assembler to assemble microcode,
code for conventional minicomputers may also be assembled. In the latter case
the user would define all instructions belonging to the same non-zero ex-
clusivity set, thus indicating to the cross-assembler that only one in-
struction per program memory word will be allowed.

As a final note, perhaps some mention of the architecture of the cross-
assembler itself is in order. The cross-assembler performs only one-pass,
but a provision for forward referencing of variables (i.e., using a label le-
fore its definition) has been built in. This implies the cross—assembler must
be able to access program memory locations which have been previously as-
sembled, in order to resolve any forward references to a label at the time
of definition. The solution to this has been to maintain a core-resident
array of all possible program memory locations. Since this may require con-
siderable working space for machines with large program memories, the user
has control to specify via the .DARCH pseudo-op which portion of memory must

be generated, and therefore which portion of memorv is available for use.

Es Characteristics of the General Cross-Assembler

One of the features of the generalized version of the cross-assembler is
that all variables dependent on the machine for which assembly is to be done

must be defined via metalanguage commands at each assembly. In order to

i
i
k
i

minimize the burden placed on the programmer a method has been devised where-
by the required metalanguage definitions may be prestored as a separate disk
file, and input so as to seem transparent to the user.

This section is devoted to in-depth details of what a user must do in
order to create an environment to facilitate assemblies for a given machine.
Special attention is called to subsection C, which gives in-depch definitions
for all pseudo-ops available, including the metalanguage commands available
for defining a machine as well as pseudo-ops necessary for an assembly.

The first step to be accomplished is to divide the set of available
instruction mnemonics into canonic classes (i.e., groups of instructions
having similar operands). The canonic classes may then be defined by stat-
ing minimum and maximum number of allowable operands, indicating any required
operands, and enumerating elements of the set of available operands. A set
of immediate constant (IC) classes also needs to be defined. An IC class has
a lower and upper limit, and an associated beginning and ending bit number in
a program memory word. Once both the canonic instruction classes and the IC
classes have been conceptualized, the user is ready to begin creating the

appropriate disk files.

A. Assembler Input Language Specifications

A "line" of code to be assembled should be a character string consisting
of 80 characters, of which only the first 72 will be examined, allowing for
the use of sequence numbers.

Since the cross-assembler was designed primarily for assembling in-

structions for machines which may be microcoded, coding more than one

By

instruction per program memory word is allowable. Multiple instructions to
be assembled into the same program memory word may be coded on the same line
and separated with a semicolon (;). An alternate method to code multiple in-
structions for the same memory location is to code them on consecutive lines,
with the first non-blank character in each line after the first being a comma
(,). Note that using a comma as the first non-blank character does not in-
dicate a continuation of the previous instruction, but rather a continuation
of the program memory location, and therefore all lines should end at the end
of an instruction.

A line will be scanned and all characters concatenated to form what is
called a token, until a delimiting character is found. Delimiting characters
are members of the set {blank (), semicolon (;), comma (,), colon (:),
slash (/), equals (=)}. Tokens, then, are either labels, opcodes, or oper-
ands. Certain of the delimiters have special meaning. A slash always indi-
cates that the remainder of the current line is a comment, a semicolon
always indicates the end of an instruction. A colon appearing after the
first token of a line indicates that the first token was actually a label,
and a comma appearing as the first non-blank character indicates a continua-
tion of the contents of the memory location being assembled on the previous
line. Other than these few simple rules, the delimiting characters may be
used interchangeably. Naturally, for cosmetic reasons a standard should be
chosen for a machine and adhered to. No escape characters are provided,

since no text string assembling is implemented.

(V]

When codine an immediate constant, the plus (+) and minus (-) signs have
the normal unary and/or binary meanings. An immediate constant may contain
any number of plus or minus signs, but no parenthesized expressions are
accepted. For example, LABEL1+3, and LABEL1-LABEL2+3-LABEL3 are both accept-
able immediate constants.

The current value of the address counter (as accumulated by the cross-
assembler) is specified by an asterisk (*). Thus, immediate constants of the
form program counter * expression may be coded (e.g. *+2, *-3, *+LABl, etc.).
It should be noted that this merely produces an absolute immediate constant.
If the user wishes to generate a program counter relative constant (i.e., the
effective address is calculated at execution time by adding the program
counter to the immediate constant field stored in the instruction) then at
assembly time one should subtract the value of the program counter (e.g.,
LABEL-*, or LABEL+3-%).

Numbers may be input in any of 4 bases; binary, octal, decimal, or hexa-
decimal. The default input base is initially decimal, but may be changed via
the .DIBASE pseudo-op. The default input base is merely the base used to
evaluate a number which has no base indicator. At any time the user may code
a number in any of these 4 bases by preceding the number with one of the base
indicators (.B; .Q, .Dy Hy or '). .B indicates a binary number, .Q an octal
number, .D a decimal number, .H a hexadecimal number, and the apostrophe (')
indicates an octal number. Thus, valid numbers might be: .B1101, .Q75,

.D290, .H3AB, '72, or .HA2. Note that all numbers must either begin with a

digit or one of the base indicators. Thus, if the default input base is

hexadecimal and the user wishes to code the constant A2, the constant 0A2 must

be coded. However, .HA2 will also always be acceptable.
B. Using the General Cross-Assembler

Following is a discussion of the steps necessary to use the cross-
assembler. This includes a description of the disk files which may be gener-
ated in order to ease the burden placed on the user. Creating an appropriate
set of disk files frees the user from requiring machine definition pseudo-ops

in all source programs.
B.1 Creating an EXEC File

Clearly the user will desire a specially tailored EXEC file to contain

the necessary CP/CMS commands. The first four such commands should be:

&CONTROL ERROR
CP LINK PLIOPT 191 199 RR
ACCESS 199 z/Z

GLOBAL TXTLIB SYSLIB PLILIB FORTLIB GRLL

The first of the above four statements is an EXEC control statement which
specifies that the remaining CP/CMS commands should be typed at the terminal
only if they result in a non-zero return code. The subsequent three com-
mands access the disk containing the PL/I libraries necessary to run the
cross—assembler.

A series of seven FILEDEF commands is then necessary. These may appear
in any order. The following section attempts to describe the required files,

each file discussed is referenced by its ddname.

e B s b S b

ST ———

1 8 ARCFILE - This file normally contains the required
metalanguage pseudo-ops to define a particular machine

(such as the .DARCH, .DCLASS's, .DOP's, etc). It is read
before attempting to assemble the user's program. The

only difference between this file and the source program to
be assembled is that the input statements of ARCFILE are not
written to the listing. As an example, if we have a file
whose filename is PMP and whose filetype is ARCH, we would
code:

FI ARCFILE DISK PMP ARCH (LRECL 80 BLOCK 800 RECFM FB

25 SFILE - This disk file is the source file to be
assembled. Tt has been found convenient to let file-
name, filetype, and filemode be respectively parameters 1,
2, and 3 of the EXEC. Thus, one would code:

FI SFILE DISK &1 &2 &3 (LRECL 80 BLOCK 800 RECFM FB
e ADRFILE - This is an output disk file which will contain
the address indices for the object binary file. The name
GENADR DATA has typically been used, although if something
like &1 DATA were used the object binary could be refer-
enced even after another file was cross-assembled. Currently
used is:

FI ADRFILE DISK GENADR DATA (BLOCK 80 RECFM VB

e aT————

'i
|
|

4. WFILE - This is another output file, the listing file.
In order to write this file on disk with the same filename as
that of the source file and with filetype LISTING one would
code:

FI WFILE DISK &1 LISTING (LRECL 133 BLOCK 133 RECFM F

Sie BINFILE - This file will contain the object binary as

produced by the cross-assembler. In order to create this
file as a disk file with the same filename as the source and
with filetype OBJECT one would code:

FI BINFILE DISK &1 OBJECT (LRECL 80 BLOCK 800

6. TFILE - This output file will consist of any error messages
and lines producing these errors, and a statement saying how

many errors were produced during assembly. The file was intended
to be sent to the terminal, which is done by:

FI TFILE TERMINAL (LRECL 132

7ic INSFILE - This file should contain the instruction table
as produced by the cross-assembler by the .CREATI pseudo-op.

The pseudo-op .DEFLTI makes INSFILE an input file, and .CREATI
makes INSFILE an output file. If we wished this file to have

a filename of GENINS and filetype DATA we would code:

FI INSFILE DISK GENINS DATA (LRECL 80 BLOCK 800 RECFM FB

After all of the above FILEDEF commands the LOAD command completes

the EXEC file. This command is given by:

LOAD GENASM GENHASH GENBILD (NOMAP NODUP START

B.2 Generating an Instruction Table

Generating an instruction table which is written to disk can save
the user a considerable amount of time when assembling. The table consists
of all defined instruction mnemonics, and control information for the cross-
assembler.

In order to create this table the user must assemble a file which con-
sists solely of three pseudo-ops: .DARCH, .DEFI, and .CREATI. Naturally
since all assemblies must begin with a .DARCH this pseudo-op should be the
first statement to be read. This should be followed by a .DEFI for each
mnemonic instruction to be defined. (See Section C for use of the .DEFI
pseudo-op.) Since the only two pseudo-ops automatically built into the
instruction table are .DARCH and .DEFI the remaining pseudo-ops must also be
defined with a .DEFI pseudo-op. (For the exact definitions necessary for
these see Appendix H.)

After the entire group of .DEFI pseudo-ops should follow a single
.CREATI pseudo-op. This causes tJe instruction table as it has been built
to be written as a disk file such that it may be recalled during future

assemblies with the .DEFLTI pseudo-op.

It has proven most favorable in the past to guarantee that the file
whose ddname is ARCFILE (see section B.l above) is empty while generating
the instruction table. This has been accomplished by temporarily renaming
the file assigned to ARCFILE for the duration of the assembly generating the

instruction table, so that the file assigned to ARCFILE is a dummy file.

B.3 Defining and Creating the Architecture File

The cross-assembler as it exists allows a great deal of flexibility to
the user. Because of this, at each assembly time the assembler must receive
the metalanguage commands defining the machine for which the cross-assembly
is to take place, the canonic classes of instructions, allowable operands for
a class, etc. Rather than require these definitions at the beginning of all
programs to be assembled, the option has been created to process first another
file. This other file (whose ddname in the EXEC file is ARCFILE) is assembled
just as any other source file, with the exception that no listing file will
be produced for any source statements appearing in this file. By using this
architecture file the requirements produced by the generalization of the
cross-assembler are made transparent to the casual user.

It is important to remember that each time the cross-assembler is loaded
it starts cold, with no storage areas and with an instruction table contain-
ing only the two pseudo-ops .DARCH and .DEFI. Therefore clearly the first
instruction of an architecture file should be the .DARCH pseudo-op which
causes the cross-assembler to generate the necessary storage areas. The next

thing that should be done is to define the .DEFLTI pseudo-op by using the

1

.DEFI pseudo-op. This is done with the statement:

.DEFI .DEFLTI = '0,0,0,0,0,1,0,4

As soon as this definition is given a .DEFLTI should be issued to read

the default instruction table from disk (which defines the remaining in-
struction mnemonics). Once this has been accomplished the remaining structure
of the assembler should be defined.

Perhaps the best way to continue at this point is to define the instruc-
tion canonic classes. This task is accomplished by using the metalanguage
commands .DCLASS and .DOP, a single .DCLASS required for each canonic class
and a .DOP required for each allowable operand of that class. The .DCLASS
contains such information as canonic class number, minimum and maximum num-
ber of operands which may be coded for an occurrence of an instruction of
this class, the number of .DOP's coded for this class, and a special number
which may be used by the cross-assembler to indicate a required operand which
is missing (for a complete definition of .DCLASS and .DOP see Section C).

The .DOP is used to specify an operand mnemonic and the appropriate bits to
be set by an appearance of this operand, it associates this operand with the
appropriate canonic class, specifies the position in which this operand may
appear, and optionally specifies an IC type for instructions requiring use
of the large IC field.

Sometimes an exclusivity set may exist for which multiple members may
appear in the same memory location as long as a certain field is the same for
all instructions. For example, consider the case where multiple shifters

use the same bit(s) to determine which type of shifting should occur. In

i it e o

this case shifts may be done in multiple shifters as long as the same type of
shifting is attempted. The cross—assembler may be informed that such a
situation exists for a certain exclusivity set by using the define exclu-
sivity set check pseudo-op, .DEXCLC.

The translation tables for immediate constants, if any are required,
should then be defined. This requires a single .DTRANS to allocate storage
for the translation tables, and at least one .DTTAB pseudo-op for each of
the translation tables to specify table numbers. It is important that the
.DTRANS pseudo-op precede any .DITAB, since it defines the translation table
environment and allocates translation table storage.

Once any necessary translation tables have been defined the immediate

constant classes should be defined using the .DEFIC pseudo-op. It is im-
portant to remember that all forward referenced variables will be assumed
to be members of IC class 1.

The architecture file may be terminated by optionally changing either
the default input or the default output base. The default input base is
originally decimal, but may be changed with the .DIBASE pseudo-op to either
decimal, binary, octal, or hexadecimal. It specifies the base of a number
not preceded by a base indicator (the base indicators are .B, .Q, .D, .H,
or '). The default output base is merely the base used when creating the
address and object fields of the listing. The original default output base
is octal, although the .DOBASE pseudo-op may be used to change the output

base to either octal or hexadecimal.

13

PR

=T

—

This should complete the architecture file. Note that the architecture

file should contain solely metalanguage commands, i.e., it should not contain

any instructions which produce executable code.
B.4 Assembling a Program

Once all of the previous steps have been completed assembly is indeed an
easy task. The user must merely enter the name of the EXEC file, followed
by the filename and filetype of the source file to be assembled. For example,
if an EXEC file named PMPASM EXEC has been created, and a user wishes to
assemble a program named MYPROG FORTRAN he would merely need to enter the

command :
PMPASM MYPROG FORTRAN

Assuming the EXEC file has been created in the standard way discussed,
this would produce three output disk files; namely MYPROG LISTING, MYPROG
OBJECT, and GENADR DATA. The listing file may be either printed offline or
examined from the terminal. Typically another program is required which reads
the OBJECT file and GENADR DATA, formats the object binary, and produces some
type of output on a medium which may be input by the machine on which the
cross—-assembled program is to execute. (Typically this might be paper tape.)

The pseudo-ops required in a user's program will be minimal. Both the
.DEFC and .LOC may be observed frequently, as will be the case for members of
user-defined classes 15 and 16. The pseudo-ops .DEFI, .DIBASE, and .DOBASE
might also appear in a user program but with a low frequency. The remaining
pseudo-ops should not appear in a user program, since these necessaryv meta-

language definitions may be more easily given in the architecture fiie.

14

As a final note, it should be mentioned that the cross-assembler antici-
pates reading 80-character records, but only the first 72 characters are ex-
amined. This allows the user the flexibility of using standard sequencing
from the CMS text editor.

C. Pseudo-op Definitions

The following section presents a detailed description of the individual

pseudo-ops recognized by the cross-assembler. When applicable special re-

quirements for individual pseudo-ops are also listed.

Pseudo-op: . DARCH
3 Syntax: .DARCH numbits,lowmem,memsize,numclass,numiclass
Purpose: The .DARCH pseudo-op defines the word size, number of

program memory words available, number of instruction
canonic classes, and the number of classes for an im-
mediate constant. Since allocation of most storage

) areas is done dynamically when this pseudo-op is proces-
sed it MUST be the first line read by the cross-assembler.

Operands: The operand numbits specifies the number of bits per
instruction word, with an upper limit of 128 bits. The
operands lowmem and memsize specify the lower and upper
a4 . addresses respectively of the section of program memory

to be generated by the cross—assembler. The number of
canonic classes of instructions is specified by égmplass.

and the number of immediate constant classes is specified

b ¥y Suinciane.

Pseudo-op: .DCLASS
Syntax: .DCLASS c¢lassnum,minops,maxops,numops,requiredops
Purpose: The .DCLASS pseudo-op is used to define the properties

of a canonic class of instructions.

Operands: The canonic class classnum will consist of instructions

which must have at least minops but no more than maxops
operands coded. The operand numops should be some number
less than or equal to 10 which tells the cross-assembler
how many operand choices are to be given for this class
by the .DOP pseudo-op.

The last operand, requiredops, permits the cross-
assembler to flag an instruction which may have the ap-
propriate number of operands coded, but is missing an
essential operand. For example, let us consider the

READ instruction of PMP-1, which takes the form:

READ 1IC,(Bl, B2, 0]

where [B1, B2, O] indicates one or more of Bl, B2 or O
may be coded. This instruction reads the contents of -g

PE RAM location IC (where IC specifies some immediate

-
constant) and puts the result into one or more of the i
destination registers Bl, B!, and 0. The immediate con-
stant is a required operand and therefore the cross-
assembler should flag the line:
16

READ B1, B2

since even though it contains the appropriate number of
operands an essential operand is missing. If the bit of
requiredops associated with the operand IC is set = 1
the cross-assembler will be able to flag the erroneous
line above.

requiredops specifies a 15-bit structure with each
bit = 1 if the corresponding operand (or one of the cor-
responding group of operands) must be coded, or a bit = 0
if its corresponding operand is not required. The first
10 bits are assigned directly to the 10 possible operands
as defined by the .DOP pseudo-op. Bit 1 (MSB) is as-
sociated with the operand to be indexed as the first
operand in the list, bit 2 with operand 2, etc. TJTa the

case of the READ instruction above, if the operands are

oyl R,

defined such that IC is indexed as operand 1, Bl as

operand 2, B2 as operand 3, and 0 as operand 4, then

R

bit 1 (MSB) of requiredops should be =1. That is, re-
quiredops should be 400008. Bits 11-15 are associated
with groups of operands and should be set = 1 only if

one member of that group must be coded as an operand.

The bits are associated as follows:

Bit Number Associated Operand Group

i) 15

12 1, 2, o 3

3 Z or 3

14 25,35 or 4

15 | S R Lo

As an example of a situation in which one of the
bits 11-15 of requiredops would be used consider the

ADD instruction of PMP-I. It is of the form:

ApD {¥,1c}, [X,S,E0]
where the first operand must be either Y or IC, followed
by one or more operands chosen from X, S, or EO. Let us
consider that when the operands are defined they are in-
dexed such that Y is indexed as operand 1, IC as oper-
and 2, X as operand 3, S as operand 4, and EO as oper-
and 5. Then setting bit 11 of requiredops = 1 (i.e.
requiredops = 208) for the instruction class containing
ADD will cause the cross-assembler to verifv that at
least one of Y or IC was coded, thus flagging the invalid

line:

e S

T

Pseudo-op

P

3 . DOP

.DOP operand,bitrep,class,numinclass,numopcoded,ictype
The .DOP pseudo-op is used to define an operand, as-
sociating it with a canonic class, and specifying the
action to be taken when the defined operand is coded.
The first operand, operand, is the character representa-
tion of the operand. Only the first four characters will
be recognized. If an operand is to be an immediate con-
stant this field must be the 2 characters 'IC'.

bitrep must be an octal constant beginning with
an apostrophe. It specifies a word which will be logical-
ly OR'ed with the instruction word at assemblv time,
thereby indicating which bits should be set = 1 when
operand appears. If the binary string generated from
bitrep is shorter than an instruction word it will be
left justified and padded on the right with zeroes.
Even if the operand is an IC, bitrep will be logically
OR'ed with the instruction word.

class is the canonic class number of the canonic¢
class of instructions being defined. numinclass is the
element number of this particular element of the operand
set associated with canonic class class. The cross-
assembler merely uses numinclass as an index to the oper-

and set, with members of the set examined from low index

to high index.

Lm0, o

Bodibe. s TR LN TS

Special Notes:

numopcoded may be either the position number of

this operand if its order in the coded operand list is
essential, or zero if it may be coded in any position.
The final operand ictype is optional and is only coded
if the operand is an immediate constant (i.e.,
operand = IC). ictype specifies the class number of the
IC class to which this immediate constant belongs. If
ictype = 1 is coded then the ictype as specified in the
individual instruction definition (.DEFI) will be used
for lower and upper limits.

110 Each operand as it is defined via the .DOP pseudo-

op becomes a reserved mnemonic and therefore may

not be used as a label.

2 If the operand is 'IC' then numopcoded should never
be zero.
5% The cross-assembler searches the set of available

operands starting with that operand with

numinclass = 1 and using numinclass as an index

through the set. Therefore if an operand may be
either an IC or something else the other possi-
bilities should have a lower numinclass than 'IC'
in order to prevent the cross-assembler from

attempting to evaluate a reserved mnemonic as an

immediate constant.

o

N

Pseudo-op:

Syntax:

Purpose:

Pseudo-op:

Syntax:

Purpose:

Pseudo-op:

Syntax:

Purpose:

.DEFLTI

-DEFLTI

This pseudo-op retrieves the default instruction table

from the disk. It causes the disk file defined by a

FILEDEF command in the EXEC file with a ddname of INSFILE

to be read. This allows the user to obtain the prede-

fined instruction set.

<CREATE

- CREATE

The .CREATI pseudo-op is used to create a disk in-

struction file by writing the current instruction table

to a disk file. The filename is defined by a FILEDEF

in the EXEC file with a ddname of INSFILE. This pseudo-

op is used when initially defining an instruction set,

or may be used to add more mnemonics to a predefined ?
instruction set.

.DEFI

.DEFI inst=bits,excl,ictype,icreq,fref,pseudo,xmine,type
The .DEFT is used to define an instruction mnemonic. k-
This instruction mnemonic is added to the instruction

table for the current assembly only unless a .CREATI

pseudo-op follows before completion of assembly.

Operands:

The mnemonic itself is given as inst. This operand
should be a character string, with only the first seven
characters examined by the cross-assembler. The operand
bits specifies the instruction word bits which are set to
1 by the instruction. bits must be an octal number,
must be preceded by an apostrophe, and may not be any
longer than dictated by the number of bits in an in-
struction word. The cross-assembler will, however, ac-
cept a shorter-than-necessary string which it left-
justifies with zero fill on the right.

The operand excl specifies a 10-bit structure with
each bit representing an exclusivity set. (Instructions
which are mutually exclusive, i.e. no more than 1 may be
coded per line, belong to the same exclusivity set. An
instruction may belong to more than 1 exclusivity set.)

The operand ictype specifies the IC class number if
the instruction uses the large IC field, or 0 if this
field is not used. This field is used whenever the class
of an IC is specified by the .DOP to be = 1. icreq
should be = 1 if the large IC field is required for this
instruction, =0 if not. fref should be =1 if forward
referencing is allowable, =0 if not. pseudo should be

=1 if the instruction is a pseudo-op, =0 if not.

22

v

Pseudo-op:

'\ Syntax:

Purpose:

Operands:

N Pseudo-op:
Syntax:

Purpose:

xmine should be =1 if the operands coded for an in-

struction should be examined with appropriate bits being
set even if an insufficient number of operands were coded,
and xmine should be =0 if coding an insufficient number
of operands should cause no operands to be examined.
Finally, the operand type specifies the canonic class
number of the instructions (or pseudo-op class for
pseudo-ops) .

. DTRANS

.DTRANS numtrans,sizetrans

The pseudo-op .DTRANS is used to define the translation
tables optionally used by an immediate constant class.

It defines the number of translation tables needed as
well as the size of the largest table. This pseudo-op
must precede any attempts to specify translation table
elements with the .DTTAB pseudo-op.

The total number of translation tables necessary is given
by numtrans. The second operand, sizetrans, specifies
the number of elements in the largest translation table.

.DTTAB

.DTTAB num,offset,begindex,valuel,value2,...

The .DTTAB pseudo-op is used to specify elements of an

immediate constant translation table.

Pseudo-op:
Syntax:

Purpose:

Operands:

Pseudo-op:

Syntax:

The first operand, num, specifies the number of the

translation table. offset is the offset amount which
must be added to an immediate constant to convert this
to a table index from 1 to n, where n is the number of
elements in the table. The operand begindex merely speci-
fies which table entry follows, and valuel, value2, etc.
are the actual translation table entries (with valuel
being the hpgjggggfi table entry).

.DEXCLC

.DEXCLC exclset,beginbit,endbit

The .DEXCLC pseudo-op defines an exclusivity set check
which may allow more than one member of an exclusivity
set to coexist on the same instruction line. It is used
for exclusivity sets where a particular field is used

by all members of this set, but multiple members may co-
exist if this field is to be the same for all members.
The exclusivity set number (from 1 to 10) is given as
the first operand, exclset. The bit numbers correspond-
ing to the begin and end of the field used by both in-
structions are specified respectively by the operands

beginbit and endbit.

.DEFIC

.DEFIC class,lowlimit,hilimit,begin,end,trantab

Purpose: This pseudo-op specifies upper and lower limits for an
' immediate constant class, the begin and end bit positions
of the instruction word for an IC of this particular
class, and a translation table number if the immediate |
constant to be coded requires some translation before
{_. ' it is put in the instruction word.
i : Operands: The operand class specifies which IC class is being de-
fined. lowlimit and hilimit define respectively the

! lower and upper values which an IC of this class may

k attain. begin and end specify begin and end bit posi-
tions of the instruction word to be used by this IC %
! class (with the MSB being called bit 1), and trantab
S either is the number of a translation table necessary to
' convert an IC coded to a value placed in the instruction
j word, or O if no such translation is necessary.
s Note: IC class 1 should always define the '"large IC field",
since class 1 limits are used for resolving forward
! references as they are defined.
Pseudo-op: .DIBASE
; 4 . Syntax: .DIBASE base
Purpose: The .DIBASE pseudo-op may be used to define the default
input base, that is, the base assumed for any numerical
immediate constant not preceded by a base indicator.
i

L9

- :
¢
!

Operand:

Pseudo-op:

Syntax:

Purpose:

Operand:
Pseudo-op:
Syntax:

Purpose:

Operand:

Pseudo-op:
Syntax:
Purpose:

Operand:

The single operand base should be either 2, 8, 10,

or 16 (assuming the previous default input base was
10).

.DOBASE

.DOBASE base

The .DOBASE pseudo-op defines the output base used

in printing the address and object c¢olumns of the
listing.

The single operand base may be only 8 or 16.

-LOC

.LOC value

The .LOC pseudo-op is used to set the address location
counter. It is not allowable to set this counter to a
value less than the current value.

The single operand value should be the value to which
the address counter is to be set.

.DEFC

.DEFC name=value

The .DEFC pseudo-op is used t assign a value to a given
mnemonic label.

The operand name is the mnemonic label to be defined.
Only the first seven characters are recognized by the
cross-assembler. The value assigned is given by the
operand value, which may be any predefined label or any

constant.

Pseudo-op:
Syntax:

Purpose:

Example:

Pseudo-op:
Syntax:

Purpose:

Example:

User-defined Pseudo-op Class 15

1 mnemonic (opcode with no operands)

This pseudo-op class allows the user to define

mnemonics that allow a certain bit (or bits) to be

set =1 in all subsequent instruction words.

Assume a user is dealing with a 24-bit machine where

bit 14 (with MSB = bit 1) is a mask bit for interrupts,

i.e., no interrupts are allowed when bit 14 = 1, inter-

rupts are allowed when bit 14 = 0. The user is able to

define a pseudo-op, say MSK, which will cause the mask

bit to be set to 1 in all subsequently assembled in-

struction words until another instruction (of user-

defined pseudo-op class 16) turns this bit off again.

To define the instruction MSK, the user would code:
.DEFT MSK='00002,0,0,0,0,1,0,15

User-defined Pseudo-op Class 16

1 mnemonic (opcode with no operands)

This pseudo-op class allows the user to define mnemonics

that allow a bit (or bits) set = 1 by an instruction of

pseudo-op class 15 to be cleared again (=0) in 511 sub-

sequent instruction words.

"user-

Let us again consider the example discussed under
defined Pseudo-op Class 15". After the user has com-

pleted the section of code where bit 14 = 1 (i.e.,

interrupts were disabled) he wishes the assembler to

again produce object code with bit 14=0 (i.e., interrupts
should be enabled again). To accomplish this a pseudo-op,
say UNMSK, may be defined which will undo the work of the
MSK pseudo-op. To define the pseudo-op UNMSK the user
would code:

.DEFI UNMSK='00002,0,0,0,0,1,0,16

D. Outputs from the General Cross-Assembler

The cross-assembler produces several outputs including a listing file, a
file designed for the terminal (consisting of error messages and statements
producing these errors), and a binary object file with an address file to
serve as an index. Assuming the listing file has been written to disk it mav
be either printed offline or typed at a terminal, as the user may desire.

The file intended for the terminal is to give the user an indication of the
success of the assembly, and there is usually no reason to save this file.

The binary object file usually will require another follow-up program
to read, format, and transmit thre data to some medium so that it may be ac-
ceptably input to the user's machine. It is this binary object file and
associated address file upon which we shall focus our attention in this
section.

Only the program memory locations for which an instruction was coded will
be written to the binary object file, thus creating the need for the associated

address file. The address file consists of pairs of begin and end addresses.

28

If an end address is one less than the begin address this means that there

were no binary object words written for this pair, and it may be ignored.
Since only the .LOC, pseudo-op allows an address change of more than one loca-
tion, this only occurs if the source program begins with a .LOC, or if two
.LOC pseudo-ops are coded consecutively with no intervening instructions.
(What actually happens is that when a .LOC is encountered the cross-assembler
decrements its address counter which points to the address of the next avail-
able program memory word, writes this value to the address file, then sets
its address counter to the value of the operand of the .LOC and writes the
value to the address file.) The address file is terminated by a pair of be-
gin and end addresses, both of which are 999999,

The address file is created using record-oriented transmission in PL/I.
Assuming ADR CNT is a 31-bit binary fixed variable, then a typical output

statement to the address file might be:

WRITE FILE (ADRFILE) FROM (ADR CNT);

Thus a PL/I input statement should also read into a 31-bit binary fixed

variable, say ADR INDEX with a statement similar to:
READ FILE (ADRFILE) INTO (ADR INDEX);

As previously mentioned in section B.l the address file is created with ddname
ADRFILE having a blocksize =80 and variable blocked record format (i.e., in

the FILEDEF use BLOCK 80 RECFM VB).

SE—

The binary object file is created using PL/I stream-oriented transmis-
sion. Each memory location is written with a B-format (bit-string format) of
length NUMBITS where NUMBITS stands for the number of bits in the user's
machine. Thus assuming the binary object is stored in an array called BIN COD
and ADR CNT is a 31-bit binary fixed variable, a typical PL/I output statement

to the file BINFILE might look like:

PUT FILE (BINFILE) EDIT (BIN COD (ADR CNT)XB(NUMBITS));

Note that using a record length of 80 and blocksize 800 (i.e., in the FILEDEF
using LRECL 80 BLOCK 800 RECFM FB) exactly one program memory location per
record is written only for a machine with an 80-bit program memory word.

That is, a single output record does not necessarily correspond to a single

program memory location.

1I. Example of Creating a Tailored Version of the Cross-Assembler for PMP-I

This section is devoted to a discussion of a specific example of using
the general cross-assembler for the Parallel Microprogrammable Processor (or
PMP-I) built at Lincoln Laboratory. It is also intended to serve as a user's
guide for those wishing to use the cross-assembler to assemble PMP-1 code.

Perhaps a brief word describing the architecture of PMP-I is in order.
Conceptually a PMP consists of a control unit and a number of identical
processing modules (PM's), each containing a processor element (PE) and a
data memory. The sole PMP-1 in existence contains a single PE, but if

multiple PE's are present all perform the same operation simultaneously.

Both the controller and PE's have a 24-bit architecture. The actual data-

processing tasks are performed in the PE(s), while the controller sequences
through the program, computes addresses for PE RAM(s) and PM data memories,
and communicates with external devices.

A 60-bit program memory word consists of 38 PE control bits, a 12-bit
immediate constant (IC) field, and a 10-bit controller field. The 10-bit
controller field may be further subdivided into an 8-bit field specifying
which of 256 controller operations is to take place, a bit to specify whether
or not the instruction pipeline is inhibited on a branch instruction, and a
bit to specify the source for the PE RAM address used. For completeness, a
diagram of the PE architecture appears as Appendix L, and a diagram of the
60-bit program memory word appears in Appendix D.

Step 1 in the procedure of using the cross-assembler for a new
machine is to group the instruction mnemonics into canonic classes, each
canonic class consisting of members having the same operand set. [he canonic
class divisions for PMP-I are given in Appendix B. At a first glance, it may
appear that canonic classes 11 and 12 (the Bl- and B2-shift instructions re-
spectively) have the same operand set as canonic class 2, namely all three
classes require a single immediate constant (IC) as an operand. However
upon more careful inspection it is seen that the IC in canonic class 2 is
intended for program memory bits 49-60, while the IC in canonic class 11
(Bl-shift instructions) affects the Bl-shift bits 29-30 and the IC in canonic

class 12 (B2-shift instructions) affects the B2-shift bits 35-36. Thus

o

criteria for forming canonic classes should be that all members of a class

e

should have the same operand set, and if that operand set includes an IC that
IC must be intended for the same position in the program memory word.

A somewhat easier task is determining the IC classes. This is ac-
complished by creating a list of all possible bit positions for which an IC
is intended, and for each of these groups deciding the limits that may be
placed on an IC. For PMP-I, there are 3 possible locations in a program
memory word for which an IC is intended, namely the large IC field (bits
49-60), the Bl-shift bits (bits 29-30), and the B2-shift bits (bits 35-36).
Furthermore, on the first of these groups it is convenient to place 5 limit

-
restrictions, namely -2048.to 2047, 0 to 2047, 0 to 1023, 0 to 4095, and
0 to 4. Thus the 7 IC classes as listed in Appendix C were created. (Note
that a translation table is convenient for the two B-shift classes in order
to allow a programmer to code an IC of 1-4 indicating the number of bits to
shift, but allows the cross-assembler to produce the code as listed in the
bit definitions of Appendix D.)

Determining the exclusivity sets requires careful examination of the
program memory bit assignments. Exclusivity sets are useful to indicate in-
structions which are mutually exclusive (i.e., may not appear in the same
program memory word) but do not try to set the same bits = 1. The cross-
assembler performs a logical AND as each instruction is added to a program
memory word, producing an error message if a non-zero result is obtained.
Thus, exclusivity sets should consist of instructions requiring the same
program memory word bits but may not necessarily produce a conflict message

from this logical ANDing.

Three immediate exclusivity set candidates for PMP-I are ALUl operations
(bits 1-6), ALU2 operations (bits 7-12), and control opcodes (bits 41-48).
More careful consideration indicates an exclusivity set for the instructions
that use the recirculating bus (bit 15) will indicate a conflict if an
erroneous attempt is made to set the recirculating bus to the contents of
the M register for clocking into one of the B registers, and to the contents
of a PE RAM location for clocking into the other B register. This eliminates
a problem with the first version of the cross-assembler for PMP-1 which did
not flag the erroneous combination of the READ and MOVM instructions.

A Examining bits 31, 32 indicates that these bits control the shifting
that may occur either in Bl or B2. Thus Bl and B2 may both perform shifts
simultaneously as long as they are the same type of shift. This adds an
extra complexity: the B-shift instructions are mutually exclusive only if
they attempt to set bits 31, 32 differently. This problem is overcome by

) defining an exclusivity set for the shift instructions as well as an ex-

clusivity set check (via .DEXCLC) which examines bits 31, 32 and produces no

error message if these settings are the same. The final exclusivity set is
defined for PE RAM access instructions,to cover the case of an attempt to
read and write the RAM simultaneously where either the read or write (but
not both) use the contents of the S-register (PEAS=1) as its effective
address.

These 6 exclusivity sets complete those defined for PMP-I. Perhaps it
may not be immediately obvious why other classes were not defined. For ex-

ample, one might notice that an attempt to perform a logical right shift of

el

4 bits as well as a logical right shift of 2 bits in Bl would not produce an
exclusivity set conflict. However both of these instructions would attempt
to set bit 28=1 and the cross-assembler would detect this as a conflict when
it logically ANDed the two bit strings of the instructions.

Once the language of the machine has been conceptualized in this manner

the user is ready to begin creating his definition files as indicated below.

A. Setting Up the EXEC for PMP-1

The EXEC file used for assembling PMP-I code was named PMPASM EXEC and

appears as Appendix F. The first four lines are standard and appear as given

\
1 in Part I, Section B.1. The FILEDEFS for ddnames SFILE, ADRFILE, WFILE,
BINFILE, and TFILE are also the standard forms as given in Part I, Section
! B.1.
The name chosen for the architecture file was PMP ARCH, and thus the
FILDEF for ARCFILE is:
)
FI ARCFILE DISK PMP ARCH (LLRECL 80 BLOCK 800 RECFM FB
Similarly the name chosen for the disk instruction file was PMPINS DATA, and
thus the FILEDEF for INSFILE is:
FI INSFILE DISK PMPINS DATA (LRECL 80 BLOCK 800 RECFM FB
.
B. Generating an Instruction Table for PMP-1
The PMP-1 instruction table was created by an assembly of the file
PMPINST FORTRAN. This file, which appears as Appendix H, begins with the
.DARCH pseudo-op for PMP-1 which must declare PMP-1 as a 60-bit machine,

having 12 instruction canonic classes and 7 IC classes. The lower and upper
memory limits are not particularly relevant, since PMPINST FORTRAN will con-
tain no source code which will produce executable code.

The next 12 statements are the required .DEFI statements to define the
pseudo-ops not built-in to the cross-assembler. This includes all pseudo-ops
except .DARCH and .DEFI, and these definitions should be present in all files
generating an instruction table.

The remainder of PMPINST contains a .DEFI pseudo-op to define each of
the mnemonics given in Reference 2. Each .DEFI is created from the defini-
tion (as given in Reference 2), memory bit assignments (Appendix D), exclu-
sivity set definitions (Appendix E), IC class table (Appendix C), canonic
class table (Appendix B), and a list of control opcodes (Reference 2,
Appendix A). As an example, let us consider the mnemonic BMPY.

This instruction requires én addition (F=A PLUS B) in both ALUs, clock-
ing of both Al and A2 if the MSB of the M-register is non-zero, and logically
left-shifting the contents of the M-register one bit. From the ALU function
select table (Appendix K) we see that for the function F=A PLUS B we must

choose the ALU control lines S., S SZ’ S3, Cn’ and M such that S_, S

0 110 1*

M=0 and Sg’ SO, and C“=1. Since the addition is to be performed in both ALUs,
this means bits 1, 4, 5, 7, 10, and 11 should be set =1. Furthermore, ex-
amining the memory bit assignments given in Appendix D indicates that M is

logically left-shifted one bit if bit 18=1, and Al, A2 will be clocked when

the MSB of M is 1 if bits 22, 23, 24 are given as 011.

35

-
3
é
3

1
3

i

Thus, the 60-bit word for BMPY may be given (in octal) by:
46460103000000000000. BMPY requires the use of both ALUl and ALU2, thereby
belonging to exclusivity sets 9 and 10. Since these are the two LSB's of the
exclusivity set field, the exclusivity number coded is 3. Since BMPY does
not require (nor allow) any IC, the IC class is coded as 0, and both flags
used to indicate a required IC and when forward referencing is allowed are
also 0. BMPY is not a pseudo-op therefore the pseudo-op flag should be O,
and since no operands are allowed the flag to indicate whether to examine

any operands if an insufficient number were coded is not applicable (and
therefore coded as 0). From the canonic class table we find BMPY belongs

to canonic class 1. Thus the definition line for BMPY becomes:
.DEFI BMPY="'46460103,3,0,0,0,0,0,1

When all instruction mnemonics have been similarly defined and stored
as part of the instruction table it is important to write this table to
disk. This is accomplished by use of the pseudo-op .CREATI.

As previously mentioned, if the cross-assembler is used to assemble
this file the appropriate disk instruction file will be created. It is im-
portant to remember however that no architecture file should be read before-
hand, and so when assembling PMPINST FORTRAN the file PMP ARCH should be re-

named (often times TEMP ARCH has been used).

36

(oF Creating an Architecture File for PMP-I

The EXEC file for PMP-1 cross-assemblies names a file called PMP ARCH
to be assembled before assembling a user source program. Thus PMP ARCH
(which appears as Appendix G) may be used to define the particulars of PMP-T.

Naturally the first statement of PMP ARCH must be a .DARCH, since it is
this pseudo-op which causes the cross-assembler to dynamically allocate neces-
sary storage areas. The operands of .DARCH are clear, since PMP-I is a 60-bit
machine with 2K of program memory, and for which the instructions have been
divided into 12 canonic classes and the IC's into 7 IC classes. Immediately
following comes the definition of the pseudo-op .DEFLTI and by issuing the
~ .DEFLTI pseudo-op the default instruction table previously created from
PMPINST FORTRAN is retrieved from disk.

The 12 canonic classes are then defined, each class definition consist-
ing of one .DCLASS pseudo-op and a .DOP pseudo-op for each allowable operand.
(Notice that canonic class 1 allows no operands and therefore no .DOP is
used.) Special attention is drawn to the fact that the fourth operand of
.DOP actually specifies the order in which the cross-assembler examines the
tist of available operands. In particular, this implies that when an operand
may be either an IC or something else the other possibilities should be
checked for first, otherwise the cross-assembler will incorrectly attempt to
evaluate an operand which is not an IC as an IC.

As an example let us consider the definition of canonic class 9. From

the canonic class table appearing as Appendix B we see that a class 9 in-

struction may have 2, 3, or 4 operands, the first of which must be either an

3

immediate constant (IC) or Y, and the remaining operands should be one or more
from the set {X, S, EO}. Therefore, the .DCLASS pseudo-op for canonic class 9
specifies at least 2 operands but no more than 4 operands may be coded, and

5 operands are included in the operand set. The final operand which speci-
fies any required operands is given as '20. This means that of the 15-bit
field corresponding to this operand bit 11 is =1, i.e., of the operands whose
indices are | and 2 at least one must be coded.

The operands of canonic class 9, in the order of their indices, are Y,
IC, X, S, and EO. Notice that the last operand of .DCLASS specifies that
either Y or IC must be the first operand coded, which satisfies the canonic
class 9 rule. Also, Y must have a lower index than IC (1 vs 2) in order to
prevent the cross-assembler from an attempt to evaluate Y as an immediate
constant. Both Y and IC must appear as the first operand if they appear and
so the fifth operand of .DOP (numopcoded) should be set = 1. The order of X,
S, and/or EO is not important and therefore numopcoded is given as zero in
these cases.

There is only one exclusivity set check and override case in PMP-I, the
shift instructions (exclusivity set 6). The .DEXCLC peeudo-op is used to
indicate that if two instructions of exclusivity set 6 are coded for the same
program memory word there is no conflict if the shift bhits 31-32 are similar
for both instructions.

Only one translation table is necessary, the translation'table for the
shift instructions. The .DTRANS pseudo-op allocates 1 translation table with

4 entries, and the .DTTAB pseudo-op is used to fill this table with the

38

results to be used for the shift-count-bits (bits 29-30 and 35-36) as indi-

cated in Appendix D.

D. Assembling a User Source Program

After the creation of PMPASM EXEC, PMP ARCH, and PMPINST FORTRAN's
assembly to create the instruction table on disk, the burden is removed from

the user. The user need only invoke the PMPASM EXEC by typing the CMS command:

PMPASM name type

where name and type are respectively the filename and filetype of the user's
source program. All appropriate machine definitions occur automatically,
transparent to the user's program.

A follow-up program has also been generated to create a paper tape
which may serve as input to PMP-I. This program may be invoked by entering

the command:
PMPPUN name

where name is the same filename as entered in the assembly process. Eventual-
ly a more sophisticated method will exist whereby the user may send the ob-
ject binary directly from the IBM 370 to a minicomputer which in turn com-

municates with PMP-I, but this system does not yet exist.

Muehe

Laird

Kretz

Kretz

References

(20 February 1975), private communication.
(22 February 1977), private communication.
(2 October 1975), private communication.

(26 March 1976), private communication.

2. Cross-assembler. An assembler which runs on one machine, but assembles

Appendix A. Definition of Terms and Concepts

Following is a discussion of terms and concepts which appear frequently

in the text of this report.

) Canonic class. Perhaps one of the most fundamental ideas behind the

use of the general cross-assembler is defining canonic classes

and dividing the instructions into the appropriate canonic
classes. A canonic class is formed by a group of instructions,
all of which have the same list of allowable operands. The sole
difference between two canonic classes is that some difference
exists either in allowable number of operands, allowable operands,
or action taken by the cross-assembler (e.g., in the case of PMP-I,
LRSB1 and LRSB2 are not in same class since in the first case

the cross—-assembler defines Bl-shift bits and in the second case

B2-shift bits are defined).

code for another machine.

3. Delimiter. One of a set of special control characters recognized by
the cross-assembler. This set consists of the comma (,), semi-
colon (3), colon (:), slash (/), equals (=), and blank ().
Delimiters are used to break the source line into segments (see

Token) .

H

< T T TR e A

4. Exclusivity Set. This concept pertains to two or more instructions
which are mutually exclusive, i.e., they may not appear ii iLhe same
program memory word. The requirement of defining exclusivity
sets arises from the design of the cross-assembler for micro-
programmable machines, for which more than one instruction may
be coded in the same program memory location as long as conflicting

sources, destinations, and/or wires are not required.

5. IC (Immediate Constant). The term IC (or Immediate Constant) refers
to an operand which is either a numerical constant or a symbolic

label (which the cross—-assembler converts to a numerical constant).

6. IC Class. An IC class consists of a group of numerical constants,
bounded by both an upper and a lower limit. In addition to these
limits an IC class has associated with it beginning and ending
bit numbers which specify where in an instruction word it is to

be placed. Another feature allowed in an IC class is translating

the input constant by means of a translation table.

7 Large IC Field. The '"large IC field" referred to in the text is the
field typically used to hold addresses or address displacements.
For example, on the PMP this would be bits 49 through 60 (with
MSB = 1); on the Data General Nova this would be bits 8 through

15 (with MSB = 0).

8. Metalanguage. A language used in the definition of other languages.

- T

9. Opcode. An operation code, which specifies operation or instruction to

be performed. Each opcode is typically represented by an abbre-

viation, or mnemonic.

10. Operand. Typically used to specify either sources and/or destinations
for an operation code. For example, considering the PMP instruction
ADD1 Al,M the opcode is ADDl and operands (in this case destina-

tions) are Al and M.

11. PMP. Parallel Microprogrammable Processor. A high-speed processor de-

signed for digital signal processing applications at Massachusetts

Institute of Technology, Lincoln Laboratory.

12. Program Counter. The term program counter as used here is synonymous

with the address of the current program memory location.

13. Pseudo-op. A command which controls the cross-assembler, but itself

produces no executable object code.

2 l4. Token. A character string separated from the remainder of a source
' i H
line by delimiters. A token may contain no imbedded delimiters. :
. . ‘
! A token will be either a label, opcode, or operand.
p

ot
W
.

Translation Table. Used to convert the actual IC coded by a programmer
to the bit string placed in a program memory word, if the two are
not equivalent. An optional offset may also be specified, which at
assembly time is added to the coded IC before using that number as

the index to the appropriate translation table index.

43

{R1V}

39S 9yl woaj uasoyos aq 03

spueaadp -pog88eyy st pue do

(TSANO “TO¥Z “TVSTT ‘14NS ‘1dav ‘1d0X °TANV -0U B SB S9ABYSQ uOT3IONIISUIL

‘THO ‘TEWOD ‘TIVROD ‘TIAOW ‘TVAOW “4vS ‘4vT)idd ‘0 31 rspueiaado 7 10 ‘T ‘@

LY0Z>D150

(AAOMHLE “AAOIWE “HOXMWL “HOXdWL ‘TTXINC CATXdWL
CANXMNE “ANXAWE “dHOMWE CdHAdWE COAAMWE

COdAdWC “‘TAMINE “THAARL “XIMWE ‘XLAWL “OVIWC
COVARE “AVIWLC “HEVANC “TVIRC ' TVAREC COXMNC
COXAWE “AXMNEC “UXdHC “IXMWL CIXAWE YNC CdWe

quHHJmOOQwunc mquwupwchN- mmoﬁwuHWC .vyv:u
S T ——— A it—— —_ 2q Isnuw Yo Iym ‘3IJuBISUOD

WddT ‘OINTO°0ILIS ‘0dAT XAVANI XAT HSTI)D (MM‘IAOW)dd 2leTpauwl ue ‘puerado augQ

—

(SXASAOW “ASAVMS ‘SINId ‘Xnvd1d
‘XOVIAS ‘LIVH ‘41dd1 ‘IddT1 *SAVSd “T19vsd ‘TgvNd
CAVAYLIXN ‘AXAVAYA “AQVANA “HASTT “ASAOW “XMWL “XdWC)D

(S¥M ‘0149 ‘X149
‘ATAY “CAWE ‘TAIWE ‘OWD “4vD ‘z94d “WSTT “AdWg)dd *12a9 ‘spueiado oN

SSEB[) Ul Soruocwauy uor3draoseq pueaadg

¢ SUOTI0N1ISUI~I1 [-did 10] SOSSE[) oLuoue) ‘g XIpuaddy

SSe1)

44

L%0Z>01>8%02~ (MOX “¥0O ANV ‘94aS ‘aav)d

L90Z>01>8%02~ (sa1)o

660450150 €20T>01>0 [H0Z>0T1>8%02~

B e, T — o —— ———

(XNWLES “OTIMSK SYLS ‘AWHN ‘XWIW dAN0D)D
1Y

€20T >01>0 (avay) dd

(XSVAT ‘XSTT ‘X0dd “XONI ‘XAAOW ‘XAOW)D

(9S9V ‘gSANO ‘zo¥z ‘gvsT1l ‘zdns
‘ZAAY ‘7HOX “TANV ‘72¥0 ‘ZEW0D ‘TVWOD ‘ ZHAOW ¢ ZVAOW)Ad

SSB[) Ul Soruowaup

{03 ‘S *X}

198 9yl WO} uasoyo 1B Spueiad
—-do Buruteway -z 10 IUBISUOD
93BTpaWWT UB 13ylle 2q Isnu
pueaado 3sitg -papod aq Isnu 7
1sea] 3y ‘*spueaado # 10 ‘g ‘g

*pa1jroads
9q JIsnuw yorym ‘I1¥ A0 IUBISUOD
23leTpowWWI ue Iaylra ‘pueaado |

parjroads
9q 3Isnu YoIym ‘x 10 JUBISUOD
2jerpauwl ue Iayire ‘pueaado |

*{0°zg‘149} 39S 2yl jo

210w 10 2u0 Aq pamo[TO] ‘3juels

—-U0D d3jpIpaUWWT UE 9q 3ISNW puUBRId
—-do 3saty -parjroads aq 3snu g
}sea] 3y -spueaado 4 10 ‘¢ ‘g

*{0d‘S*X} woaj uasoyd aq 01 e
spueiadp -porjroeads aq 3Isnu |
3sea] 3y c°spueaado ¢ 10 g I

*{WgV} woaxjy uasoyd
9q 031 spueiadp “pag3e[] S1 pue
do-ou e se saaAvyaq UOTIONIIS

-u1 ‘g 31 cspueaado 7z 10 [‘Q

s

~t

sse1d

v>01>1 (Z4S¥VAT *7dSy1 *zds¥v)dd

9>01>1 (T9s9vdT “T9S¥1 ‘19S¥V)ad

(Savady “WAOW)dd

SSe[) Ul Soruouwauy

T TR e v . o

*pPopod 9q 3snu yOoTyMm
‘juelsuod 23eIpauwUI ue ‘puesado |

*pPapod 9q 3Isnw YoTym
‘Juelsuod 9jerpauwT ue ‘puerado |

*{0°24 149} 39S @Yyl W01 UISOYD @I
spueiad() “papod 3q Isnu T
Ises] 3e ‘spueirado ¢ a0 Sz °1

uorjdraoseq pueiadp

1T

APPENDIX C. IC Classes and Translation Tables for PMP-I1

Beginning Ending Translation
1C Class # Limits _BiE d Bit f __Table #
1 -2048 < IC < 2047 49 60 0(None)
2 0<IC<2047 49 60 0(None)
3 0<IC<1023 49 60 0(None)
4 0<IC<4095 49 60 0(None)
5 1<IC<4 49 60 0(None)
\ 6 1<IC<4 29 30 I
! 7 1<IC<4 35 36 L
TABLE 1

IC TRANSLATION

Table Entry Table Value
- 1 3
2 1

.
2
¢

APPENDIX D. PMP-I Program Memory Bit Assignments

MSB KILL /PEAS LSBE
CONTROL
g JONTROL T :
Pi CONTROL BITS OPCODE 1(
1 38 3940 Ul W849 60
~— rem———" B S —
1
SHIFT j
{ {
ALU1 ALU2 RAM | M SPECIAL 0 Bl B2 JAl |A2 4
7 13 19 5 27 3. 53 3¢ 1
|

Note:

g%}

~I

In the descriptions below, |

] stands for

Description of Control Function

S
5

for

for

tor

Q¥

for

for

for

for

for

for

for

for

ALUl.

ALU1.

ALUL.

ALU1.

ALU1.

ALUL.

ALU2.

ALU2.

ALU2.

ALU2.

ALU2.

ALU2.

48

n

contentse

of register".

Bit

15!

16

17

18

20

2242324

™

Description of Control Function

Selects input data for RAM. If 1, select [I]. If O, select [M].
Write pulse to PE RAM.

Selects data for recirculating bus. If 1, select [M]. If O,
select RAM output.

Selects input data for M. If 0, select ALUl output. If 1,
select ALU2 output.

Clock M register.

Causes data in M to be left-shifted 1 bit. The shift is logical
unless control bits 22, 23, 24 are set to 'l110', in which case
the inverted sign bit of ALUl is shifted in as the LSB.

Clock ALUl sign, overflow, equal, and carry flip-flops.

If ALUl is set for F=Al and bit 20=1, F=Al if sign flip-flop = 0,
F=B1 if s.:n flip-flop = 1. (Used to find larger of [Al] and [B1l].)
If ALU1 is set for F=Bl and bit 20=1, F=Bl if sign flip-flop = O,
F=Al if sign flip-flop = 1. (Used to find smaller of [Al] and [B1l].)
Selects sign, overflow, equal, and carry flip-flops for possible
clocking into B2,

These special bits are decoded as follows:

001:A2 is clocked if sign bit of M is 1

010:Al1 is clocked if ~ign bit of M is 1

011:A1 and A2 are clocked if sign bit of M is 1

100:0peration in ALU2 is changed if F=A+B is chosen so that F=B

if sign of [B2]=0, F=MINUS B if sign of [B2]=1.

Bit

22,23,24

27

28

29,30

Ik 32

Description of Control Function

101:Al and A2 are clocked if the sign bit of ALUl is O.
110:The sign bit of ALUl is inverted and clocked into LSB of M if
bit 18=1. Al is clocked if sign bit of ALUl is O.
111:A2 is clocked if sign of M is 0. M is logically left-shifted
1 bit unless sign of [M] = 1.

The O-register is unconditionally loaded (based on bit 15), and an
external interrupt is generated.
If sign of ALUl is 1; O-register is loaded (based on bit 15),
busy flip-flop is set, and an external interrupt is generated.
Selects input for Bl. 1If 1, recirculating bus is chosen. If O,
Bl shifter is chosen.
Clocks Bl with the data selected by bit 27.
Data in Bl is clocked into Bl shifter, and shifted 1,2,3, or 4
places right. Sign bit is filled according to bits 31, 32. Number
of shifts is given by bits 29, 30 as follows:

00-shift 4 bits

10-shift 3 bits

0l-shift 2 bits

11-shift 1 bit
These bits determine the type of shifting done in both shifters

according to:

00:arithmetic right shifting (Sign bit is shifted into itself and

next LSB).

Description of Control Function

0l:Circular right shifting (LSB becomes MSB).
1X:Logical right shifting (Shift zeroes into MSB).
Selects input for B2. 1If 1, recirculating bus is chosen. If O,
B2 shifter is chosen.
Clocks B2 with the data selected by bit 33.
Data in B2 is clocked into B2 shifter, and shifted 1,2,3, or 4
places right. Sign bit is filled according to bits 31, 32.
Number of shifts is controlled by bits 35, 36 as follows:
00-shift 4 bits
10-shift 3 bits
0l-shift 2 bits
11-shift 1 bit
Clocks Al, loading output of ALUL.
Clocks A2, loading output of ALU2.
Kill bit. If =1 when a jump is taken, the instruction pipeline

is killed.

PE address select bit. If =1 the PE RAM address is given by [S].

If 0, PE RAM address is given by the IC field of the program memory

word.

Control opcodes. For a complete listing of the current assignments,

see Reference [2] Appendix A.

Immediate Constant (IC) field.

51

i it s ol

APPENDIX E. PMP-I Exclusivity Sets
MSB LSB
: BIT 1l 2 3 4 5 6 7 8 9 10
. PE B-REG. [RECIRC}CONTR.| ALU2 | ALUI
3 RAM ISHIFT. | BUS |7ypgs
ACCESS USED
k. Exclusivity Set Description
1-4 Not used.
:;_ 5 Instructions that require a PE RAM access. This
: ﬂ includes MOVI, WR, READ, WRS, READS.
6 The B-register shift instructions. Recall that
the rule applying to these is that a shift may be
: done simultaneously in both B-registers only if
the same type is done in both. Thus a .DEXCLC
(Define Exclusivity Set Check) pseudo-op will be i
!
used for the bits which indicate the type of
¥ shifting to be done.
7 Instructions using the recirculating bus. ;
. This consists of MOVM, READ, and READS. %
8 This set consists of all controller instructions, j
: of which only one per program memory word may be |
: coded.
9 All instructions using ALU2. %

10 All instructions using ALUL. i

APPENDIX F. EXEC File for a PMP-I Cross Assembler

FILE: PMPASHM EXEC A 1/12/77 09:39 M.I.T. LINCOLN LABORATORY

§CONTROL ERROR
CP LINK PLIOPT 191 199 EE
ACCESS 199 2/2
GLOBAL TXTLIB SYSLIB PLILIB FORTLIB GRLL j
FI ARCFILE DISK PMP ARCH (LRECL 80 BLOCK 800 RECFM FB
FI SPILE DISK &1 &2 &3 (LRECL 80 BLOCK 800 RECFM FB
FI ADRPILF DISK PMPADR DATA (BLOCK 80 RECFM VB
FT WFILE DISK &1 LISTING (LRECL 133 BLOCK 133 RECFM F
FI BINFIIE DISK &1 OBJECT (LRECL 80 BLOCK 800 RECFM PB
\ FI TFILE TEPMINAL (LRECL 132
FI INSFILE DISK PMPINS DATA (LRECL 80 BLOCK 800 RECFM FB
LOAD GENASM GENHASH GENBILD (NOMAP NODUP START

.
: e
| 1
APPENDIX G. Architecture Definitions for PMP-I
FILE: PMP ARCH A 12/21/76 09:44 M.I.T. LINCOLN LABORATORY
.DARCH 60,0,2048,12,7 PMP00010
e .DEFI .DEFLTI='0,0,0,0,0,1,0,4 PMP00020
e | .DEFLTI PMPCO030 ‘
5 .DCLASS 1,0,0,0,0 PMP00040
.DCLASS 2,1,1,1,1 PMP00050
.DOP 1€.,%0,2,1,1,1 PMP00060
.DCIASS 3,1,2,2,0 PMP00070
.DOP A1,'0000000000004,3,1,0 PMP0008O
.DOP M,*000002,3,2,0 PMP00090
.DCLASS 4,1,2,2,0 PMP00100
.DOP A2,10000000000002,4,1,0 PMP00110
.DOP M, *000006,4,2,0 PMP00120
.DCLASS 5,1,3,3,0 PMP00130
.DOP X, * 0000000000000004,5,1,0 PMPO0O 140
_ .DOP $,*0000000000000002,5,2,0 PMP00150
‘ .DOP B0, '0000000000000001,5,3,0 PMP00160
j .DCLASS 6,2,4,4,0 PMP00170
.DOP 1¢,'0,6,1,1,3 PMP00180 1
.DOP B1,10000000014,6,2,0 PMP00190 5
.DOP B2,'000000000014,6,3,0 PMP00200 |
.DOP 0, * 000000004 ,6,4,0 PMP00210 |
.DCLASS 7,1,1,2,0 PMP00220 |
' .DOP €. %0 . T2:0:0 PMP00230 |
.DOP Y, *'0000000000000001,7,1,1 PMP00240 |
.DCLASS 8,1,1,2,0 PMP00250 |
.DOP 1¢,'0,8,2,1,1 PMP00260
.DOP EI, *0000000000000001,8,1,1 PMP00270
.DCLASS 9,2,4,5,'20 PMP00280
.DOP Y, *0000000000000010,9,1,1 PMP00290 :
) .DOP I1C,'0,9,2.1,1 PP00300 |
4 .DOP X, '0000000000000004,9,3,0 PMP00310 |
E .DOP S, *0000000000000002,9,4,0 PMP00320
. .DOP E0,*0000000000000001,9,5,0 PMP003.0 !
.DCLASS 10,1,3,3,0 PMPO0340
.DOP B1,*0000000014,10,1,0 PMP00350]
.DOP B2,°000000000014,10,2,0 PMP00360
.DOP 0, '000000004,10,3,0 PMP00370 {
2 .DCIASS 11,1,1,1,0 PMP00380 {
.poP IC,*0,11,1,1,6 PNP00390 |
.DCLASS 12,1,1,1,0 PMPO0UOO |
.DOP 1¢,'0,12,1,1,7 PMP004 10 |
.DEXCLC 6,31,32 PMPO0OU20
.DTRANS 1,4 PMP004G30
.DTTAB 1,0,1,3,1,2,0 PMPOOUUO
.DEFIC 1,-2048,2047,49,60,0 PMPOOLSO
.DEFIC 2,0,2047,49,60,0 PMPO046O
.DEFIC 3,0,1023,49,60,0 PMPO0470
.DEFIC 4,0,4095,49,60,0 PMPOOLBO
.DEFIC 5,1,4,49,60,0 PMP00490
.DEFIC 6,1,4,29,30,1 PMP00500
.DEFIC 7,1,4,35,36,1 PMP00510

54

APPENDIX H. Instruction Table File for PMP-I

FILE: PMPINST FORTRAN A 2/08/77 14:29 M.I.T. LINCOLN LABORATORY
.DARCH 60,0,2048,12,7
.DEFI .DEPIC='0,0,0,0,0,1,0,1
.DEFI .DCLASS='0,0,0,0,0,1,0,3
.DEFI .pop='0,0,0,0,0,1,0,6
.DEFI .DEFPLTI=*0,0,0,0,0,1,0,4
| .DEFI .CREATI="0,0,0,0,0,1,0,5
.DEFI .DTTAB='0,0,0,0,0,1,0,8
.DEFPI .DTRANS='0,0,0,0,0,1,0,9
<BERE . LOE=Y0,0,0,0,0,1.0;%0
.DEFI .DEFC='0,0,0,0,0,1,0,11
.DEFI .DEXCLC='0,0,0,0,0,1,0,12
.DEFI .DIBASE=*C,0,0,0,0,1,0,13
.DEFI .DOBASE='0,0,0,0,0,1,0,14
.DEFI BMPY='46460103,3,0,0,0,0,0,1
.DEFI LLSM='000001,0,0,0,0,0,0,1
.DEFI PPB2='000000100004,0,0,0,0,0,0,1
.DEFI CAB='3000004,1,0,0,0,0,0,1
\ .DEFI CM0O='300010002,1,0,0,0,0,0,1
} .DEFI BMPY1='46000102,1,0,0,0,0,0,1
.DEFI BMPY2='00460101,2,0,0,0,0,0, 1
.DEFI BDIV='30000106,1,0,0,0,0,0,1
.DEFI BFIX='7651000500474,"23,0,0,0,0,0,1
.DEFI BFLO='00000007,0,0,0,0,0,0,1
.DEFI MOVI='00006,%490,3,1,90,0,0,2
! .DEFI WR='00002,40,3,1,0,0,0,2
.DEFI WRS='00002000000004,%40,0,0,0,0,0,1
.DEFI ARSB1='0000000004,'20,6,0,0,0,0,11
.DEFI ARSB2=¢00G.. °000004,*20,7,0,0,0,0, 12
.DEFI LRSB1='00000000044,*2¢,6,0,0,0,0,11 W
.DEFI LRSB2='000000000044,*20,7,0,0,0,0, 12
.DEFI LEARSB1='0000000004Z,*20,6,0,0,0,0,11
l .DEFI LEARSB2=1000000000024,*20,7,0,0,0,0,12
.DEFI LAB='5100002,1,0,0,0,0,1,2
.DFFI SAB='7500002,1,0,0,0,0,1,3
* .DEFI Mova1=¢75,1,0,0,0,0,1,3
.DEFI MOVA2='007%,2,0,0,0,0,1,4
.DEFI MovB1='51,1,0,0,€,0,1,3 :
.DEFI MOVBZ='0051,2,0,0,0,0,1,4
.DEFI COMA1='01,1,0,0,0,0,1,3 1
. .DEFI COMA2=*0001,2,0,0,0,0,1,4
.DEFI COMB1='25,1,0,0,0,0,1,3 9
.DEFI COMB2='0025,2,0,0,0,0,1,4
.DEFI OR1='71,1,0,0,0,0,1,3
& .DEPI OR2='0071,2,0,0,0,0,1,4
.DEFI AND1='55,1,0,0,0,0,1,2
.DEFI AND2='0055,2,0,0,0,0,1,4
: .DEFI XOR1='31,1,0,0,0,0,1,3
| .DEFI XOR2='0031,2,0,0,0,0,1,4
! .DEFI ADD1='46,1,0,0,0,0,1,3
.DEFI ADD2='0046,2,0,0,0,0,1,4
.DEFI suB1='30,1,0,0,0,0,1,3
.DEFI 50823'0030,2,0,0,0,0'1'“
.DEFIY LL511='62,1,0,0,0,0,1,3
.DEFI LLSA2='0062,2,0,0,0,0,1,4
.DEFI ZR01='14,1,0,0,0,0,1,3

FILE:

LINCOLN LABORATORY

APPENDIX H. Instruction Table File for PMP-I (Continued)
PMPINST FORTRAN A 2/08/77 14:29 M.I.T.
-DEFI ZK02='0014,2,0,0,0,0,1,4

.DEFI ONES1='16,1,0,0,0,0,1,3

.DEFI ONES2='0016,2,0,0,0,0,1,

«DEFIX ABSB='00460004,2,0,0,0,0,1,4

+DEFI READ=*(0,*50,3,1,0,0,0,6

«DEFI MOVMN='00001,'10,0,0,0,0,0,10

+DEFI ADD='0,4,1,0,0,0,0,9

+«DEEX JMPX='0000000000000010,4,0,0,0,0,0,1
-DEFI JMKX=*0000C00000001C10,4,0,0,0,0,0,1
_DEFI SUR='0000000000000020,4,1,0,0,0,0,9
+DEFPI DVwY-'0000000000000030,“,0.0,0,0,0,1
«DERF LLSYQ-'00000000000000“0,“,0,0,0,0,0,1
-DEFY ='0000000000000040,4,1,0,0,0,0,9
.DEFI Q‘ADY"OCO(OOOOOCOOO126,“,0.0,0,0,0,1
«DEFI DREADXY='0000000000000127,4,0,0,0,0,0,1
«DEFI OrR='00000000000000€C,4,1,0,0,0,0,9
+DEFX NXTREAD= 'U0000000C0000131,U,0,0,0,0,0,1
«DEPY ENABL=*0000000000000100,4,0,0,0,0,0,1
«DEFY XOR=*0000000000000100,4,1,0,0,0,0,9
+DERI DSABL=*0000000000000110,4,0,0,0,0,0,1
.DEFY PSAVS='0000000000000120,4,0,0,0,0,0,1
«DEFI Lpx=+*0000000000000130,4,1,1,0,0,0, 2
+DERPY READS=¢00000000000004,*50,0,0,0,0,0,10
.DEFT JMP='0000000000000020,4,2,%,1,0,%,2
<DEFI ®O0VX=+0000000000000140,4,0,0,0,0,0,5
.DEFI JMK='0000000000001020,4,2,1,1,0,1,2
«DEFPI MOVY='0000000000000150,4,0,0,0,0,0,5
«DEFT JMPXL='0000000000000137,64,2,1,1,0,1,2
«DEPI INCX=*0000000000000160,4,0,0,0,0,0,5
+DEFI JMKXL='0000000000001137,4,2,1,1,0,1,2
+DEFI DECX=*0000000000000170,4,0,0,0,0,0,5
«<DEFE JMPXE='0000000000000136,4,2,1,1,0,1,2
«DEFI 1LSX=*0000000000000200,4,0,0,0,0,0,5
«DEF1 CoMP=*0000000000000210,4,1,0,0,0,0,7
«DEFY MEMX='0000000000000212,4,3,0,0,0,0,7
-DEFY MEMY='0000000000000214,4,3,0,0,0,0,7
+DEFI STAS=*0000000000000216,4,3,0,0,0,0,7
.DEFT LDS='0000000000000220,4,1,0,0,0,0,8
.DEFI LDEI='0000000000000222,4,0,0,0,0,0,1
+DEFI LDEIB=*0000000000000223,4,0,0,0,0,0,1
.DEFI LDEO=+0000000000000224,4,1,1,0,0,0,2
«DEFI JMKXE='0000000000001136,4,2,1,1,0,1,2
+DEFI JMPXG='0000000000000140,4,2,1,1,0,1,2
+DEFI JMKXG='0000000000001140,4,2,1,1,0,1,2
-DEFI JMPAL='0000000000000133,4,2,1,1,0,1,2
«DEFI JMKAL='0000000000001133,4,2,1,1,0,1,2
-DEFI JMPAE='0000000000000132,4,2,1,1,0,1,2
«DEFI JMKAE='0000000000001132,4,2,1,1,0,1,2
-DEPI JMPAG='0000000000000134,4,2,1,1,0,1,2
«DEFI JMKAG='0000000000001134,4,2,1,1,0,1,2
«DEFI JMPTX='0000000000000135,4,2,1,1,0,1,2
«DEFI JMKTX='0000000000001135,4,2,1,1,0,1,2
«DEFI JMPOVF='0000000000000160,4,2,1,1,0,1,2
.DEFI JMKOVF='0000000000001160,4,2,1,1,0,1,2
«DEFI DREADX='0000000000000125,4,1,1,0,0,0,2

APPENDIX H. Instruction Table File for PMP-I (Continued)

FILE S PMEPINST

-DEFI
+DEFI
«DEET
-DEFI
+DEFIL
«DEFE
+DEFI
~DEFI
-DEFI
.DEFI
<DEFI
.DEFI
+DEFIT
-DEFI
.DEFI
- DEPYI
“OEF X
.DEFI
<DEFI
+-DEFI
« DEFI
<DEFTI
-DEFI
.DEFI
~DEFI
<-DEFI
~DEPL
«DEFI
<DEFI
.DEFI
+DEFI

«CREATI

FORTRAN A 2/08/77 14:29 M.I.T. LINCOLN LABORATORY

CLRIO='0000000000000236,4,4,
SETIO=¢0000000000000231,4,4,
SETMUX='0000000000000234,4,4
MSKIO='0000000000000232,4,
HALT='0000000000000230,4,0
SETAUX='0000000000000237,4
CLEAUX='0000000000000240Q,4
JMKDEI="'0000000000001122,4
JMKDEO=*0000000000001123,4
4
4
4
&

~Ns o
~

o~

JMKDHP=40000000000001124,
JMPDEI=*0000000000000122,
JMPDEO='0000000000000123,
JMPDHP='0000000000000124,
LDPM='0000000000000050,4,°
PINTIS='0000000000000121,4,
JMPXNE='0000000000000225,8
JMKXNE=*0000000000001225,8
JMPXLE=*0000000000000226,4
JMKXLE=1'0000000000001226,4
1Y
4
1
a4

SRRV NNOO O
O % 2 5 & 2 s 5 s s Os
D T S Y
NN N S =

0 kil k' aadimd h KD DN
O~ " % 8 % a s s s s Os OO

Os > 8 8 5 s 8 » 8 =

O =N N NS

JMPXGE=10000000000000227,
JMKXGE='0000000000001227,
LLS4=0000000000000060,4,
SWAPSY='0000000000000070,
MOVSYXS='0000000000000150
LEASX='0000000000000240, 4
MEMXSY=*0000000000000250,
MEMXMSY=10000000000000252,
MEMXS=*0000000000000254,4,
INCXHX='0000000000000256,4,
MOVXSTS="0000000000000260,4
INCXSTS='0000000000000262,4

OfFe v a8 anw s

O % OO0 = A = 2 d =2 v

we «
OWs OO % & 8 s % s =

’
’
[}

W e~

(=
S s O Y O s OO0OO0OCODO0OOOY OCOOOODDOCOOOO

. s We ~
OO OO OO= >~~~ v s = o

wws

-~ -

g
4
‘!
:
i
3
:

(0 1VA-0) S34=A® (INTVA-T) S8V =11/ XONISK WA UKW VOCONILO0ONLNO3L 00
I0TVA-0=C4 1{=n/ XACatlR A5ul¥ 200020500 L 000503000
L+S“X=5/X0=2% XONI:C foiid £d00T 9K 000Z9:Z91L0000000L 00
& XAOW 0000Zn1L0000000000000

NOIIVO0T 04 S:ZINIOd LINL/ 0 Xa1 FNID38 OWN 00000EL00000003C 0000

B L I T e 4

i8 *3°I) SNOILVDCT

“(Q
S LINOVW 10dIN0 ZHI

d
ass

dOLS ATTIVILINI 3
d4800Y-N3AT JHI N

P

gm SINIV
17

S
qd83d

H

((Z2/SW-8/TW-TK) *TH) EIOHYT=9¢W L3S °T
d0 ZINTVYA =ZIOTCSEY IIVINDIYD “i

*ISITIVRS
38 40 °TIVA °"SHV ISEOHYT OJ S3z43d Ik <4ALCN
@3S WHIINOOTIV EZHI “NOTLYWIXDJdddV A8 LEts-0
WVS XITIROD HOVE S0 ZANIINOYK ZKI JIVINDTYD

OL SK ‘LdVd 9VkI 9
sSROTTIO04 SV
I¥J071 WVE NI Q35045

WK NN NN

R

S9ta=5%EM >dza-°
NItea=nSEAY JQd3c*
SN a=5hikd Jd3c”
hhEs=nhEdd J42C*
L34=1%%d 2433-
034=09d% J4i3

R R R R R e

TaNwio
oNs NOILIVD0T YA NOILNZAN
I¥TiwIS ¥ o D)L NOII¥DOT W
¥ Ol ¢ * ¥ HIIM G3NId
S Ndw 3 n LY shdde A8
NCIZ 1Y 2 | aHd 3J0IL
*SLTNSES 333kd 20 Skail=R90T 1 5:10dW0D Nakl /
GNY ‘sdndinc (I4d) & CRAD I i SS¥s X " i 4 ACAIINSVR /
L adfidWC) =200 4 NOI LY S g €244 i Y1 HONOW ad /
NCI I¥SS ¥ AT32ZNW I ORIISIA i STdNY NIRCGTTOd ZHIZ /
/

L N I L I e

‘weiBoiq aydwes T XIANAddV

n0000
t0000
20000

L0000
00u00

"

§ m

wor

NN NN

58

R R Y sra e

ANBCEV-dV¥EM 404) 081
(ANOOEY-dVEmM H04) 08TV

1 (800= INIVA D4

0Ls ((SIANLIINOYR) CLHO107)

o4
/
4
/
/
9 /
SNOIJLVI01 Q¥-NdAd dHL NY (SEANLINSYW) SINTIVA IndNI (Lee-0) Ve
k, d3IsN SNOILWOOT WYE /
#
/
((s118 /
fn Yk 1L = (gqo) /
& 51 7 WOdd /
13 3 YIvd /
e I q 1Z2-NON /
LS 4 &« IN IEI S300 0714€) 3INca /
dHI M SLATIHS ANVW TIINQ ¥Ivqd 3HI 1d /
TAVL 804 J3iSn WHII /
/
/
S3I1d10 dil LY /
6 11 NV nE /
TIV¢ N M 8=} T7% /
iRYS dHL NI £ & /
5d4AdY IHL ONIQIAI '’
*LE -0 SNOILVO0T /
/
"SIINSZY¥ 43ANLI 4 L9 /
/
e AL E B LA L L B et N
110838 389045/ 52X XONI“S4m
W NI 9YW TUNLII/

0000ZnLN03000000000C
00000 LI00C00J00000C

J00039500000000Z00

((Z/5Shen/ IN) *IW) 4398 ¢ 1=W/ 6Y7 C000000Q0C0002Z000LS

3 A Z000LELD00000900000¢
12 » LeQO0OLZO0CNLOOOL 000D

i)00000 0000000090910

J00023000LH0000000000

20000002014 000004 0£0C
G000000S3n00000045LS
G0000000NLNLOZCLO0GL
000000000000022000L ¢S

0000000000000%00000¢
0000000n00NL000LOOLS
SJBNOS 223080
; (penut3Iu0)) SuTISTT Weadoiq ordwes -1 XIANIddv

K .

ZZ000

s vlU

0Lo000
L0000
30000
50000

'y

204
Lo
ot
06
g6
Lo
0
20
ne
th

Lo

68
€8
L8
78

ng

FTNVOerr oo
(VRN R [

¢
Uiy

L3

:umt.mmm n:mooooooooooaomooocuuoo,.m:f
W LAACWIGIEWS HM 29£000000000002C00LS %9000 ShlL

LE“nagWy avi: LEAOK n3£0000000hL00Z000LS £9000 mnt
' sasas(NI0dY-dYEN H04 SANT 40 LESsss/ LH’GnEWH a¥ay 5he 0000000nL00000000 29000 £4L
534409 104100 NI YIVQ 3801S/ S’°%x‘z GavisHN 20003070000000920000 L300C ¢he
! 0I¥A 93N ¥ 320005d 1,NSI0A 9NITYDS 0OS L13S/ o W V1 000000006000022000LS 09000 int
: INOG L3R LON J1 ONIJOOT 3ONILNOD/ 3007 907 IXdWr® £%0 £ZOOLELDOOOOONODO00E L5000 Ont
SIIE h IX3N)-(slI9)a9L)-952=W/ LEs dROJtLE NAOK®LY L80s LEOOOLZh0ONLO00L 000 95000 6EL
: W zo WAON 0000000000nL0O0SLALO0 35000 BEL
((SIT3 ¢ LX3IN)- (#II8)aIL)=d/ W z40s 00000000000000900£00 13000 (f1
XSV3Tin ZESH1 0000nhZ0NHN0000000000 €5000 Y€t
h aa¥in Z4SHE1T ShEDZ000mN0000000000 ZS000 SEL
X XSVY31'n ZdSd1 00007nZ0HNN0000000000 LS000 nEl
X XS¥31n Z8S¥41°:ZW ZNS 11 0000H7nZZnHn0000002900 I5000 ket
SNOILISOd 9ST NI SIIE h IXEN=29 i0d/ X XS¥ETh Z¥ST1 00007hZZnh 0000002900 LNOOO ZEL
X XSY3T!79 WAOW:Z Z¥S 11 00007hZZHL0O0000LZI00 9m000 LEL
(vbas IS&Id) W J0 dSW LINO/ X XSVAT!WSTITIZY THsS1 0000nMHZZ000000L0Z900 3h000 OEL
T Z9 NI SiI8 % 7 6Z1L
LXZIN I39 GNY (h JJIHS-T)9L X9 AdW's II9 SNIVLINOD AUN ZV sesse/ 6ZL
LZi
X XSva1'014€ 0000797200000L0000000 nHh000 3T1
X XSvZ1:014d 0000n71Z00000£0000000 ¢€n000 SZL (=]
X XS¥31'0148 00001nh22000040000000 28000 tZL D
X XSY31°014d 0000NnZ00V00L0000000 LNh0O0O £Zi
X XS¥iT‘01de 000071200000L000000 0n000 22
X XS¥ITiLW 510744 0000nHZn0000L000000F LEOOC LZL
§00=20 XYW 3Ty 0L 9 1o¥dlans/ X XSYETiLgLoWy 1920748 L900nHnZ000NLLI000000 9000 OZi
X XSVITiLY 1:0748 0000HNNZ20000L0000029 SE000 6hi
X XSY3ITLV 1t0144 7000n72%000040000029 NEQDO Sbi
X ASYETS LY 10148 0000nNZn0000L0N000Z9 <cE0D0 Lbb
X XS¥ITLLY 1¢0748 000007Zn0000L00000Z9 ZEO00 9bi
X X5¥3IT!LY 120748 000077 Zn0000L000002Z9 LEOOO Sii
X XSNITv 120736 0000 nZn0000L0000029 0c000 mil
X XS¥ITALW 110748 00007NZH0000LOD0002Z9 LZOOD EkL
X XSYITTLN 110148 GOCONNZNO000LI00002Z9 9IZ000 Zii
L7 NI (0Oms) 957 LV=ANTOD/ X XS¥ITlLY oW 0748 000nNZn0000L00000LS 52000 il
ANT=RL+=25 20=2%/ X XSHITLE’ZE°0IWE 134t W LBAON JOONNIZHALNLOOZONLLS nZ000 Ot
PR LIE OuZZ-NON ISNL 40 # IZ4 :ix 13q . 504
D T T L L (STi8 £T XS 1) / 804
I14 . Q3141KS~3 OF OnEs SNIQAY X8 AT 379D 10IIN0 504 s€aV wns/ L0t
U
VIVI INENI+Le/ 50¥34 :d0017901 000091 30000490000000 &€2000 S04
T ¥ivil 310add¥ QaVvO1 cennn/ nolL
t0+
222008 123irg iGQY aNIT

(penut3uo)) Jurisy] weaBoxg ardues 1 XIANAddV

APPENDIX TI. Sample Program Listing (Continued)

; CROSS REFERENCE TABLE

NAME ADDRESS DEFINED FEFERENCES
LOG_BEG 00021 101
LOG_LOO 00023 105 140
MAG_BEG 00000 45
MAG_100 00002 48 62
FM30Y 00344 23 146
PM3U45 00245 24 143
RM36U 00364 25 10k
i RM3IEE 0036¢ 26 145
‘ BM60 00060 21 110
2 ME 1 00061 22 120

O STATEMENTS FLAGGED IN THIS ASSEMBLY

-

61

]
APPENDIX J Error Messages Produced at Assembly Time
Following is a description of all error messages produced by the cross-
assembler, with possible corrective actions suggested. All error messages
are output immediately before the source line producing the error.
1 xx k% XEXCLUSTVITY ET CONI I
- Two or more mutual ¢ € instructions have been coded for
the same program memoryv word. 1 nstructions have been inclusive
OR'ed which probably result instruction other than either of
the two conflicting instru
\
i 2 *%%%*MORE THAN 1 IC USED
Two instructions intended for the same program memory word require
the use of the large IC field. The two IC's have beesn inclusive OR'ed,
probably producing a third IC.
3. **%**TLLEGAL COMBINATION
|
Two instructions are trying to set the same bit, typically indicating
5 multiple use of registers, wires, etc. The instructions will still be
OR'ed, with proper execution doubtful.
‘
4. *%%%*SOURCE PROGRAM TOO LONG
An attempt was made to assemble code for a memory location whose
address is greater than the upper limit specified by the .DARCH pseudo-op.
Assembly is terminated.
s **%%**UNDEFINED LABEL name
E A forward reference was made to an IC called name, but at the end
¢ of assembly the value of name had not yet been defined.

~J

&.

>

15155

*XAXX[INKNOWN OPCODE opcode
The instruction mnemonic opcode was coded, but it does not appear
in the table of defined instruction mnemonics.

#%%*%*TNVALID OPERAND operand for opcode
lhe instruction mnemonic opcode appeared with operand coded as an

operand, but operand is not an element of the operand set for this

instruction. operand is ignored.
#%%x X% TNSTRUCTION opcode ALREADY DEFINED

A .DEFI attempted to define the instruction mnemonic opcode, but

opcode has already been defined. The new definition will be ignored.

#%*INSTRUCTION TABLE FULL

An attempt to define an instruction mnemonic with a .DEFI was made,
but there was no room in the instruction table for this mnemonic. The
DEFI will be ignored.

#%%**TNVALTD CANONIC CLASS FOR opcode

A .DEF1 pseudo-op attempted to define the instruction menmonic

opcode, but specified that opcode belonged to a nonexistent canonic

class (where number of canonic classes was specified in the .DARCH

pseudo-op) .
**XXXINVALID ATTEMPT TO CHANGE ADDRESS

The operand of the .LOC pseudo-op is invalid. Usually this indi-

cates either an attempt to set the address counter to a value less

130,

16.

than the current value or to a value greater than the maximum program

memory location as specified by the .DARCH pseudo-op.

%%%*CONSTANT operand OUT OF LIMITS

The immediate constant operand is outside the limits for the current
instruction.
%*%MISSING OPERAND FOR opcode

The instruction opcode has been coded with an insufficient number

of operands. Depending on the instruction mnemonic the cross-assembler

may or may not examine operands that were coded.
**%%%*TO0 MANY OPERANDS FOR opcode
The instruction mnemonic opcode has more than the maximum allowable

number of operands. Only the first n operands will be examined, where n

is the maximum number of allowable operands.
*%***INVALID EXCLUSIVITY SET FOR opcode
An attempt to define opcode with a .DEFI pseudo-op contains an

illegal exclusivity set value. The definition of this instruction

mnemonic is ignored.

*%x%**REQUIRES operandl JR operand2

Either operandl or operand2 is required for this instruction

mnemonic but was not coded. The available operands are assembled.

el A s

]

.

18.

19.

20.

*%%%*WRONG PLACE FOR OPERAND operand

operand is a valid operand for the current instruction and its
position in the list of operands is essential to its meaning. The
instruction appears here with operand coded but not in the proper posi-

tion. The cross-assembler will ignore operand.

#%%x%%*TNVALID OCTAL STRING FOR name

name is either an opcode being defined with a .DEFI pseudo-op or an
operand being defined with a .DOP pseudo-op. The actual bit string value
to be assigned to name must be coded as an octal constant beginning with
an apostrophe ('), but is coded illegally here. The .DEFI or .DOP is

ignored.

%RESERVED MNEMONIC name USED AS CONSTANT

name is a reserved mnemonic but the user has attempted to use it
either as a label or as an operand which must be an immediate constant.
If it is being defined as a label the definition is ignored and if name

appears as an operand a value of zero is used.

*%***name MULTIPLY DEFINED

Either name is a label being defined which already has been defined
or a reference is being made to a label for which multiple definitions
have been given. If a definition is being given it will be ignored, and
thus a reference to a multiply defined label will retrieve the value first

assigned to that label.

21, *%*%**GYMBOL TABLE OVERFLOW FOR name :
An attempt to define the label name was unsuccessful since there was
no longer any room available in the symbol table. The user will need to
omit some labels. Currently the number of symbols allowed is 1023 minus

the number of reserved mnemonics.

22. *%*%%**[NKNOWN CONSTANT name
A reference to name appeared but name has not yet been defined and
the current instruction does not allow forward referencing. A value of

zero will be used.

23. *%*%%*INVALID CONSTANT name
The immediate constant name was coded but cannot be deciphered. Typi-
cally this indicates a numeric constant containing a non-numeric character

or a number not allowed in the current base.

24, *%%%**CROSS-REFERENCE TABLE FULL
A label was referenced but there was no room available to save this
in the cross-reference table. The program memory word is assembled
correctly, but the cross-reference listing will not reflect this variable

reference.

25, k*x%**1C LIMITS EXCEEDED BY CONSTANT WITH FORWARD REFERENCES AT ADDRESSES
numbers

This message is produced when a label which has been forward
referenced is defined but is not within allowable limits. numbers is a
list of all addresses where this label has been referenced. The address

fields of all addresses listed will not be updated.

66 \:.

cuor3rsod JueDTJIUSIS 910w IXAU AYI 03 PaIJIYsS ST 3ITq yoeqd

R Ty l\]l‘x«,lw|||||lr|l.,

. V=d | T SONIW V=d “ v=d HHHH |
_ 1 SN V SN'1d (8+V)=d _ V S0 (84V)=d q+V=4 THHH
| [SNTd V SI'Id (44V)=d ” V SNd (84V)=d g+V=d HT1HH
_ T S0'Id V SNTd V=d LV s01d v=d _ 1=d | TT1HH
_ av=4 m [SONIK av=d . av=d | HHTH ;
_ [$01d 9V SN'd (4+V)=d _ gV SN1d (9+V)=d a=d | THTH
_ 1 SNd € SN'1d V=d ! 4 SNd V=d i Q@ vea | HT1H
| [S07Td 4V SN1d V=4 __ av SN'ld V=d av=d | T11H
_ av=d I SONIK gv=d av=d | HHHT
! 4 SONIW V=d ., 1 SONIW € SANIK V=d 4@ v=d | THHT
1 SNTd 9V SNTd (d+V)=d _ gV SNTd (9+V)=d =4 H1H1
I SN1d 9V SNTd V=d 4V SN v=d av=d . 1701
oMdzZ=4 (1dWOD $,2) T SONIK=d | 0=d ! HHT1
[SNId (8+V)=d H4V=d _ av=d 1897
1 SN (44V)=d q4V=d g4v=4 R
I SNTd V=4 V= y=d s i
, (K11e0 W) o mccwwmmﬁ 05 Tg Zg &g
T=0= 9 | H=T= 0 H-KW q UG SEEIEIS
SNOTIVNAd0 DILGRHLIEV “1-h it 1 |
] L vom mmeemioe .. o
I-dWd 103 °9TqelL 3IO93Ta§ uUoTr3oung TV A XIANIddV
. -
.

67

431S193y 4074 din4 w
(0)1ng1no)

]

. ﬁllil\"}
(2n7v) SQYOM 000l (1Nv)
LINN 21907 (WYY) 1INN 21907
aNv AHOW3IW SS3D0V anv
DIL3IWHLINY WOGONVY Y DIL3IWHLIEY
)) !]) \
Lics, e
sug -1 | wat | L S8 b1 ©
LHOIM L4IHS 1437 14IHS T:o& L4IHS B
43151934 4318193y 4315193y 1934 43151938
28 2v W g LV |
i \
4 SN8 ONILYINDHIDIY
—
4315193y |

2IN3093TYD1Y (d4) IUSWDTH 108590014 I-dWd -1 XIGNAddY

\ UNCLASSIFIED
SECURITY CLASSHMCATION OF THIS PAGE (Rhen Data Entered)

71 READ INSTRUCTIONS
(1 REP(LRT DOCUMENTATION PAGE BEFORE COMPLETING FORM
! 1 3 2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
- -
) ESDHIR~77-72
b = | s
;. TITLE (and Subtutle | >~SYPE OF REPORT & PERIOD COVERED
P 17 ‘ A et /] D) et 1
] ’ A ¢ A General-Purpose Cross-Assembler [orProducing Y echnical Mote
} =] Absolute Binary Object Code o e ie—————
/ e Sy & gl o 5 PERFORMING ORG. REPORT NUMBER
Technical Note 1977-20 c
7, AUTHORA e 8, CONTRACT OR GRANT NUMBERL:
: : V/ 0 > ‘ '//‘_-
e | Paul R./Kretz (115 Jr19628-76- c-om2 -
LT - = : N il ek
3 9. PERFORMING ORGANIZATION NAME AND ADDRESS F 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
3 Lincoln Laboratory, M.I.T, [SREAGENORE DRAT-HD
' P.O. Box 73 // . Program I,J,g_ncg.L\N«). 63208F
Lexington, MA 02173 / é w
11. CONTROLLING OFFICE NAME AND ADDRESS 3 R REPORT OATE
Air Force Systems Command, USAF /7 - s Xprﬂ 1977
Andrews AFB / o ictecliond
- Washington, DC 20331 13. Nu»;asn OF PAGES
6
'\ 14, MONITORING AGENCY NAME & ADDRESS /1/ J:"vrrax/r, m Conteolling Office) 15. SECURITY CLASS, fof this report
Electronic Systems Division , / / / Unclassified
Hanscom AFB j . e e
Bedford, MA 01731 /, Sa. SCHCE.DULIE‘ ATION DOWNG ING
16. DISTRIBUTION STATEMENT (of this Report) Tz e

3 / /-4

F { ‘/7 ¢ v-,,///_/'p
! Approved for public release; distribution unlimitcd‘.\,/lf f/ //I/,, j / =
§ / BLE s .

#

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

i None

it o, e

19. KEY WORDS (Continue on reverse side if necessary and identify by block number

Ld
cross-assembler PMP-1 Conversational Monitor
binary object code pseudo-op definitions System
microcode metalanguage commands
20. STRACT (Continue on reverse side if necessary and identify by block number

A general-purpose cross-assembler is described. The cross-assembler, written in PL/I, has been
implemented on an [BM 370/168 using the time=-sharing Conversational Monitor System (CMS). Absolute
) binary object code will be produced. Although the cross-assembler has been designed with the intention
of assembling code for various microprogrammable machines, even code for conventional minicomputers
has been assembled.

Use of the cross-assembler is discussed assuming a CMS environment. Included are the disk-resident
files to facilitate an assembly. Various pseudo-ops, or assembler control statements, are used to describe
the machine for which an assembly is done. An example of using the cross-assembler for a parallel
microprogrammable digital signal processor (PMP-I) is discussed, b

b

FORM
DD ”3" "5 1473 EDITION OF 1 NOV 65 IS OBSOLETE \ UNCLASSIFIED

SECURITY CLA SUI\AVN"N o' THIS PAGE When Data Entered

